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Summary. For autotetraploid species the development of 
the concept of test value (value in testcross) leads to a 
simple description of the variance among testcross proge- 
nies. When defining directly genetic effects at the level of 
the value of the progenies, there is no contribution of tri- 
and tetragenic interactions. To estimate additive and 
dominance variances it is only necessary to have the 
population of progenies structured in half-sib or full-sib 
families; it is then possible to determine the presence of 
epistasis using a two-way mating design. When the the- 
ory of recurrent selection is applied dominance variance 
can be neglected for the prediction of genetic advance in 
one cycle as well for the development of combined selec- 
tion when progenies are structured in families. The results 
are similar to those for diploids with two-locus epistasis. 
The more efficient scheme consists of the development of 
pair-crossing in off-season generations (for intercrossing) 
and simultaneous crossing of each plant to the tester. In 
comparison to the classical scheme, the relative efficiency 
of such a scheme is 41%. The use of combined selection 
will further increase this superiority. 
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Introduction 

Variance components in a random mating autotetraploid 
populations are difficult to explore because of possible 
interactions between more than two alleles. Without epis- 

tasis and without restrictions on interactions between 
alleles, there are four components to describe genotypic 
variance of a complex character. Hence, it is impossible 
to explore the presence of epistasis by the use of complex 
designs such as the three or four-way mating designs 
described by Cockerham (1963) and the one applied by 
Gallais (1977, 1984). It is also difficult to obtain a reliable 
estimate of the epistatic components of the genotypic 
variance in diploid species because of the number of 
parameters (five) and the interdependance of their coeffi- 
cients (Chi et al. 1969). 

The use of testcross progenies has been presented as 
a means to determine the presence of epistasis in diploids 
(Gallais 1990). Direct definition of genetic effects for the 
value of testcross progenies suppresses the component of 
variance due to dominance and all epistatic components 
involving dominance (additive x dominance, dominance 
x dominance.. .) .  By restricting epistasis to pairs of loci, 

there remains only additive and additive x additive com- 
ponents for the variance among testcross progenies. 

A similar approach can be extended to autote- 
traploids. Because the gametes are diploid, the variance 
among testcross progenies in the absence of epistasis will 
be described by the additive and the dominance vari- 
ances. If the plant breeder or the geneticist wishes to test 
for the presence of epistasis for pairs of loci, five compo- 
nents will be necessary to describe the variance among 
progenies: additive, dominance, additive x additive, addi- 
tive x dominance, and dominance x dominance compo- 
nents. However, it will be impossible to have an accurate 
estimate of these five components. It is possible, for exam- 
ple, to restrict epistasis to the additive x additive epista- 
sis, without any restriction on the interactions between 
alleles. In this paper I will consider this situation. Some 
consequences for recurrent selection will be also consid- 
ered. 
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Definition of genetic effects 

1. Without epistasis 

Consider a random mating populat ion with alleles At ,  
A2, . . .  Ai, Aj and a tester with an allelic composit ion 
denoted by A x. Whatever the nature of the tester, A x can 
be an allele or a set of alleles, gametes of the tester will be 
denoted A~A x. Let A~AjAkA~ be a genotype of the popu- 
lation, and Yo~x the value of a "genotype" A~AjA.A~ from 
a progeny with the tester (A~AjA~A~ will be a genotype if 
AxA ~ represents only one type of gamete from the tester). 
For  the value T(Ukl ) of the genotype A~AjAkA 1 in combi- 
nation with the tester, it is possible to write: 

T(ijkl) -= 1/6 (Yijxx + Yikxx + Yi'x~ + Yjkxx + Yjl~x + Yklx~) 

(1) 

The value of Y~jx~ is broken down according to the fol- 
lowing model: 

Yuxx = #T + TO{; + Ta; + Tfl'ij (2) 

where Xo{'i is defined as the additive effect in test and Tfl'~j 
as the dominance effect in test: 

To{'~ = E~ (Y~xx)-~T 

T/~tij = Yijxx - -  TO{'i- T (x] - -  ]AT 

with Ej (Y~j~x) = Zj pj Yu~x, Pj being the frequency of the 
allele A~ in the random mating population. F rom equa- 
tions (1) and (2) it is possible to write: 

T(ijkl) = ]A T + 1/2 (TO{'i + TO{; AV TO{k AV TO{'I ) (3) 

+ 1 /6  (Tfltij "3V Tfltik "}- Tfltil -~ TfljkTflj1-1- Tflkl) 

To simplify the notation, additive effect and dominance 
effect are redefined as follows: 

TO{i---- 1/2 TO( i and Trio ---- I /6 Tfi'i~ , (4) 

then 

T(ijkl) = ]AT ~- T~i + T0~j + TO{k ~- TO{I 

+ T/% + ~/~ +,/~, + 4%~ + 4% + ~/~ �9 

Clearly, trigenic and tetragenic effects cannot  contribute 
to the value in test. Obviously, if the tester is the random 
mating populat ion itself TO{'~ = O{i and Tfl'U = flij, and ex- 
pression (3) gives the expression of the general combining 
ability in terms of genetic effects. 

A variance is defined for each parameter:  

a 2  = 4 E (T~)  is the additive variance in test, 

a2D~ = 6 E (Tfl 2) is the dominance variance in test, 

and 

0-2 = 2 2  + a 2  is the "genotypic" variance in test; 

that is, the variance among testcross progenies of unrelat- 
ed plants from a random mating population. If the tester 

is the population itself: 

2 1/4 2 2 +  1/36 cr~ 0 " 2 T  : 0"g ~ -  

which is also the variance among half-sibs. 

(5) 

2. With additive x additive epistasis 

To solve this problem it is necessary to consider a two-lo- 
cus genotype with genes i 1 , j 1, k t ,  11 at locus I and i2, J2, 
k2,12 at locus 2. Assuming no linkage the value in the test 
of a genotype Giljlk~li,ixj2k212 c a n  be written 

T(i l j lk l l  1 ,i2k212) = 1/36 [TYiljlizj2 + TYilj~i2k2 + . . .  

+ Yklllk212] , 

where TYi~j~i2J2 is the value of the "genotype" given by the 
gamete iljai2j 2 with the tester. There are 36 such "geno- 
types". With the same approach as previously, it is possi- 
ble to write: 

~ ~' ~- ~ _L R ~ ' TYilhk212 = ]AT~-T{~'il -]-T Jl -[-T k2- -T  12"T/Jiljl ~-Tflk2l 2 

~- T(~O{)'il k2 2U T(o{~)ti112 -}- T(O{O{)j lk 2 -]- T(0{O{); 112 
and 

T(i l j lk t l l  ,i2J2k212) ~--- fiT ~- TO{il ~- �9 " �9 -{- T~k2 -}- �9 �9 " 

~- TflitJ, ~- ' ' "  ~- Tfli2J2 ~- ' ' "  

+ T("")ili2 + T(O{O{)i~j2 + . . .  T(~O{)I,1~ �9 

Obviously there are 16 terms of the type T(~)i~i 2 and 

O{ r T(o~c~)ili 2 = 1/4 T( O{)i~i~" 

The epistatic effects can be defined directly from the value 
of the testcross progenies: 

T(o{00iliz = El,12 [T, k k tilJl 111,i2J2 212)]--T~iI--TO{i2--~T 

where El,12 is the expectation on all indices (il, j 1, k , ,  11 , 
i2 ,  J2 ,  k 2 ,  12) except i t and i 2. 

Let Cr2A~ be the additive x additive variance in test: 

~A~ -- 16 E [T(~)f i21 , 

and the total variance among testcross progenies will be: 

G g , = G ~ •  2 •  ' 
DT ~ AAT , 

if the tester is the populat ion itself, 

2 = 1/4 cry+ 1/36 a2D+ 1/16 a ] a ,  (6) 0"2T ~ 0"g 

which is the covariance among half-sibs. 

The covariances between related progenies 

Related progenies are testcross progenies derived from 
related plants. For  example, from a family of full-sib 
plants it is possible to develop what  can be called full-sib 



progenies. Then, the classical expression of the covari- 
ances between relatives in a random mating populat ion 
(Kempthorne 1957, Gallais 1989 a) can be extended to the 
covariances between related progeniesl For  two related 
testcross progenies X T and YT (from the plants X and Y), 
it is possible to write in the absence of linkage: 

COV (XT, YT) = 4 CpA 0"2 T + 6 ~ D  0-2T -~- 16 Cp 2 a 2 A T  , (7) 

where ~o A is the classical coefficient of kinship, cp, is the 
"double" coefficient of kinship or the probabili ty that the 
two genes drawn in Y are identical by descent to the two 
genes drawn in X. For  half-sibs: CPA=l/16 and q~D = 
1/216. When these values are put in expression (7), we have 
expression (6), which was established by another  way for 
the covariance among half-sibs: 

C0V (HS)T = 1/4 0-2  T 7[-- 1/36 0 0 2 A T  . 

For  full-sibs: 9A = 1/8 and ~o D = 1/27, and the covariance 
among full-sib progenies is: 

COV (FS)T = 1 / 2  0-2T + 2/9 0-2 T + 1/4 002AA T . (8) 

Obviously, the results can be extended for more com- 
plex types of epistasis. 

D e s i g n s  to  e s t i m a t e  the  v a r i a n c e  c o m p o n e n t s  

1. One-way mating designs 

In this type of mating design a set of independent families 
is considered, with n plants per family crossed to the 
tester. Two levels of variation can be considered (within 
and among families), and the experiment becomes a two- 
way mating design. An analysis of variance among and 
within families can be performed as developed by Gallais 
(1990). The variances among families (00gB~) and within 
families (0-2w~) can be estimated. Two covariances are 
available, and, consequently, only the additive and dom- 
inance variances components  of the genetic variance 
among progenies can be estimated. The families can be 
half-sibs or full-sibs. S 1 full-sibs cannot be considered 
unlike in diploids because the progenies are inbred. 

Case of half-sib families. According to previous results 
the variance among half-sib families is: 

COV ( H S ) T  = I /4 a 2  + 1/36 002 7. 

The contribution of dominance is very low, and nearly all 
of the dominance variance will be in the variation within 
families: 

2 = 3/4 0-2 + 35/36 a 2  (9) 0"GW w 

It  is then essential to have an accurate estimate of the 
variance among families. 

355 

Case of full-sib families. The variance among full-sib fam- 
ilies is the covariance among full-sib families, and: 

coy (FS)T = 1/2 002 + 2/9 0-2 . 

The within full-sib variance component  is: 

0 -2GW T = 0 - 2  T - - C O V  (FS)T = 1/2 00]~ + 7/9 crgT . (10) 

2. Two-way mating designs 

Three two-way mating designs can be considered (nested 
design or design I NC, factorial design or design II  NC, 
and diallel). 

In the case of these two-way mating designs, three 
variances can be estimated: 

- variance among half-sib families (coy (HS)T) or vari- 
ance of GCA for value in test; 

- the variance of specific combining ability [cov (FS)T-  
2 cov (HS)T ] 

- the variance among plants within a full-sib family or: 

0 ~ T = 0 " 2  T - -  c o g  ( F S ) T .  

The analysis of variance has been given by Gallais (1990). 
It is possible to estimate three components  of the 

genotypic variance: a~T , agT, 002AT. The three equations 
are: 

COY ( F S ) T  = 1/2 002AT + 2/9 002DT -~- 1/4 002AA T 

cov (HS)T = 1/4 002 + 1/36 001~, + 1/16 002 AA w �9 

0-2GWT = 1/2 0-2 +7/9  0-2 +3 /4  00~AT . (11) 

In the absence of epistasis the specific combining ability 
variance for test values is not zero unlike in the case of 
diploids: 

00~ = cov (FS)T--2 cov (HS)T = 1/16 agT . (12) 

There is no simple test for the presence of epistasis. 
The presence of epistasis could be evaluated only through 
the estimation of the components  of variance among 
testcross progenies. If the estimates are more coherent 
assuming epistasis than assuming no epistasis, it can be 
concluded that  epistasis is present. However,  this requires 
accurate estimation of the three variances or covariances: 
COV (HS)T , coy (FS)T and 002 G W  T " 

A p p l i c a t i o n  to  s e l e c t i o n  w i t h  a t e s ter  

1. Genetic advance according various schemes 

In the classical breeding scheme of recurrent selection 
with a tester, the three phases of seed product ion for test, 
testing, and intercrossing are separated (method 1). To 
maintain the mother  plant it will be better to use vegeta- 
tive propagat ion instead of selfing because selfing will 
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generate inbreeding at the level of the population after 
one generation of intercrossing. If self-fertilization is used 
in order to suppress a great part of inbreeding, it will be 
possible to develop another generation of intercrossing 
during the off-season. 

Ignoring the effect of the panmictic disequilibrium, 
and assuming vegetative propagation of the mother 
plant, the genetic gain per cycle will be 

AG 1 = i 2 c o v  PTOT ~ ,  

AG 1 = i 2 (1/2 a ~  + 1/6 a z ) / x / ~  PT, 

AG 1 = i (a~T+l/3 ~2 ) / ~ .  (13) 

This will be performed in three generations. In an- 
other possible scheme (method 2) to reduce the length of 
the cycle, the intercrossing is developed at the same time 
as crossing with the tester. Then the selection will be only 
maternal. This suppresses one generation, but the genetic 
advance will be half of the previous. Even with per gener- 
ation or per unit of time if off-season generations are used 
in both schemes, the second scheme will be at the best 
equal to the first. 

A third scheme (method 3) proposed by Gallais (1990) 
for diploids can also be applied. In this scheme, as in the 
previous, intercrossing is developed simultaneously to 
crossing with the tester. The difference is in the modality 
of intercrossing and of selection. To develop intercrossing 
pairs of plants are constituted, and the two plants are 
crossed to produce a full-sib family and at the same time 
crossed with the tester. For selection, the unit will be a 
pair of plants, and it will be selected on the basis of the 
average of the two associated testcrosses. The length of 
the cycle is two generations. The genetic advance in one 
cycle will be 

AG 3 = i coy PTO~/~/var PT , 

where cov PTOT is the covariance between the average PT 
of the two testcross progenies of a pair and the values 
(OT) in testcross of the full-sibs from the two plants. 
Then: 

e o v  PTOT = COV 1/2 (PiT + Pj~) (Oi~ + Oil) 

= COV P T O T  

= 1/2 a 2  T -}- 1/6 0"2DT , 
and 

var PT = 1/2 var PT �9 

Consequently, 

AG 3 = i x/~/2 (cry+ 1/3 agT)~/var P T .  (14) 

N.B. Expressions (13) and (14) give the genetic effect of selection 
in one cycle. For the total change in mean in one cycle of selec- 
tion, it would also be necessary to take into account the effect of 
random mating, in presence of gametic disequilibrium. However, 
as shown, by Gallais (1989b) this effect is expected to be low 

This quantity is less than the quantity (13), and the 
ratio of the two genetic advances (AG3/AG1) is 0.707. 
Considering the genetic advance per generation, the ratio 
takes the value 3 x/2/4 = 1.06, and if for each breeding 
schemes there is an off-season generation, the ratio is 
1.414: method 3 is 41% more efficient than method 1, as 
for diploids. 

2. Combined selection 

In recurrent selection with a tester the best progenies are 
identified and the mother plants of the selected progenies 
are intercrossed. Intercrossing gives the new population 
for the next cycle of recurrent selection. This new popula- 
tion is generally structured in families, half-sib families if 
there is a "polycross" of the selected plants, or full-sib 
families if the intercrossing is developed by crossing pairs 
of plants by hand. This structure is generally ignored, and 
the genetic advance is predicted by ignoring the effect of 
dominance. In progeny test selection, the effects of dom- 
inance are not very important because the coefficient of 
dominance is always very low in comparison to that of 
additive variance (Gallais 1989 a). 

2.1. Ignoring the effect of dominance. In this case, the 
same result as for diploids without epistasis can be extra- 
polated for autopolyploids. 

With half-sib families the expected gain will be rela- 
tively low except for very low heritability (Gallais 1990). 
For example, with five progenies per half-sib family and 
a heritability of 0.10 at the level of mean, the gain due to 
combined selection is 9% and only 2.5% with a more 
realistic heritability of 0.50. 

With full-sib families, five progenies per family, and a 
heritability of 0.10, the expected gain due to combined 
selection will be 30%, and 8% for a heritability of 0.50. 
Thus, it could be very efficient to consider structuring of 
the population in full-sib families when heritability is low. 
Clearly, with very low heritability (as for yield in perenni- 
al forage crops) it would be interesting to use two-way 
mating designs to develop intercrosses. This will allow 
the use of three predictors (half-sib family, full-sib family, 
and progeny within full-sib family), and the efficiency will 
be further increased in comparison to the use of informa- 
tion from only full-sib families. With perennial plants the 
development of such plans will not be more expensive 
than the development of only crossing pairs to produce 
full-sib families. A series of small disconnected 4 x 4 dial- 
lels can be used (Gallais 1989 a) or a series of small dis- 
connected factorials. 

With annual plants where vegetative propagation can 
be difficult, it is possible to develop pair-crossing at the 
same time as top-crossing as in method 3 (Gallais 1990). 
This will be advantageous in comparison to classical 
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intercrossing after selection only if pair-crossing and in- 
tercrossing can be developed in the off-season. 

The use of combined selection will increase the effi- 
ciency of method 3 to a much greater extent because it is 
based upon full-sib families. Note  that  even without an 
off-season generation, method 3 with the use of combined 
selection will be more efficient than method 1. 

2.2. Considering the effect of dominance. In this case the 
theory of combined selection must  be redeveloped. With 
a family i and a plant j within the family, with Tij denot- 
ing the phenotypic value in the testeross of the plant ij, 
the max imum genetic advance will be by the use of the 
following index: 

I = fll ( T i . - T  .)+fi2 ( T o = T I . ) -  (15) 

To simplify, a constant number  of tested plants (n) per 
family will be considered. As shown by Gallais (1990), the 
result of Lush (1943) can be directly extended to the 
considered situation by changing the notation: 

1 + ( n -  1) r 1 - r  /~, , / ~  - , 

1 + ( n - t )  t I - t  

COY (HS)T 
with t the intra-class correlation for half-sib 

@T 

families (for full-sib families coy (FS)T will replace 
coy (HUN)T 

coy (HS)T) and r -  with half-sib families. 
cov (PO) 

Coy (HUN)T is the covariance half-uncle-nephew; for 
full-sib families, Coy (UN)T (covariance uncle-nephew) 
will replace coy (HUN)T. @T is the total phenotypic vari- 
ance among testcross progenies, which is the sum of the 
among family variance and the within family variance 
and of the residual without epistasis. It is possible to 
write: 

cov (HS)T = 1/4 12 T + 1/36 a~T 

COV (FS)T = 1/2 0"2 A + 2/9 0"2DT 

COY (HUN)T = 1/8 0-2AT + 1/216 0"2 T 

cov (UN)T = 1/4 a~T + 1/27 cr~T 

coy (PO)T = 1/2 0"~T + 1/6 0"~T �9 

Then: 

1/4 0"ZAT + 1/36 0"2OT 1/2 0"2 T + 2/9 0-gT 
tHS- -  0-2 • • 2 tvs = (16) 

AT " DT t 0"e 0-2 T 2 2 + f iAT + 0"r 

In cov (FS)T and coy (PO)T the coefficient of the 
dominance variance appears to be non negligible. How- 
ever, consider the expressions (4): Tal = 1/2 T~'i, and Tfllj = 
1/6 Tfl'U" The effects ~' and fl' are defined at the level of a 
genotype, and c~ and fl are defined at the level of a mixture 
of genotypes (the testcross progeny). If dominance effects 

exist, they will be more affected by a dilution effect than 
additive effects: 

0-~  = 1/4 a ~  0 -~  = 4 E (T~'i)2 

0-ET = 1/36 0"2 0-g~ = 6 E (Tfl'~j)2. 

0"z - 2 --1/9. As in Assuming a2A,=0-~,~ the ratio VT/0"AT-- 
COY (FS)T and coy (PO)T, the coefficient of 12 T is always 
lower than the coefficient of 0"ZA~, in many  cases the effect 
of dominance is expected to be low. 

To transform the formulae for a numerical applica- 
tion, the ratio a 2 = 2 0.2 2 0-AT/( AT + 0"DT) and the heritability for 
the testing system h 2 r0"2 • w0"2 = t  AT" DTJ/ PT are introduced. 
Then 

tHS = [1/4 a 2 + 1/36 (1 - aZ)] h z , 

tFs = [1/2a 2 +2/9(1 - -a  2) h 2 , (18) 

1/8 a 2 + 1/216 (1 - -a  2) 1/4 a 2 + 1/27 (1 - -a  2) 
rns - 1/2 a 2 + 1/6 (1 -- a z) ' rFS = 1/2 a 2 + 1/6 (1 -- a 2) 

If ~o is the classical coefficient of kinship and q0' the 
coefficient of"double"  kinship, t and r can be rewritten as 
follows: 

t = [4 ~0 a z + 6 q~' (1 - aZ)] h 2 

and (19) 
2 q~ a+~o'  (1 - a  2) 

r - -  
1/2 a2 + 1/6 (1 - a  2) " 

If a 2 = 1, this gives the diploid results without epistasis. 
Numerical  application has been developed with dif- 

ferent h 2 values ranging from 0.10 (h 2 being defined at the 
level of trial mean, this value is very low) to 0.50, which 
is more realistic (such values are common for yield in 
corn). For  ratio 0"2 /0"2 (a 2) six values have been consid- AT/  GT 
ered: 0.10, 0.20, 0.30, 0.50, 0.70, and 1. 

Some results are given in Table 1. As classically, com- 
bined selection is more efficient when the kinship between 
members  of a family is high, as in full-sibs in comparison 
with half-sibs, and when heritability is low. In this latter 
case it increases with an increasing number  of progenies 
per family. 

The presence of dominance decreases the efficiency of 
combined selection. However, it is necessary to have a 
very high level of dominance to have a significant effect 
on the variance. I f a  2 = 0.50, 0-ZAT = 0"~T or on an individual 
basis: 

t /4 0"2 = 1/36 0 - 2 ,  

o r  

0-~u = 1/9 0-~ and 0-2 = 9 a2~ ,  

which corresponds to a very high proport ion of domi- 
nance variance. Values of a 2 less than 0.50 will be the 
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Table 1. Relative efficiency (E) of combined selection (A) and effect of ignoring dominance (B). n is the number of progenies per 
family. Values in A give the efficiency of combined selection relatively to individual progeny selection. Values in B give the ratio 
AGo/AG a of the genetic advance of combined selection ignoring dominance (for n = 1 it is the ratio for individual progeny selection) 

Half-sib families 

E according to n 

A B 

a 2 3 5 10 3 5 10 h T rHS tlls 

0.0500 0.10 0.063 0.002 

0.0500 0.20 0.123 0.004 

0.0500 0.40 0.175 0.006 

0.0500 0.70 0.222 0.009 

0.0500 1.00 0.250 0.012 

1.006 1.013 1.029 0.975 0.956 0.922 

1.014 1.028 1.060 0.986 0.975 0.952 

1,028 1,055 1 .117 0.995 0.992 0.987 

1.044 1.085 1,175 0,999 0.999 0,998 

1.054 1.103 1,209 1,000 1,000 1,000 

Full-sib families 

E according to 

A B 

rFS tHS 3 5 10 3 5 10 

0.291 0.012 1.074 1.140 1.290 0.974 0.966 0.962 

0.341 0.0111 1.101 1.188 1.367 0.986 0.982 0.981 

0.407 0.017 1.140 1.258 1.489 0.996 0.995 0-995 

1.465 0.021 1.178 1.321 1.590 0.999 0.999 0.999 

0.500 0.025 1.200 1.357 1.643 1.000 1.000 1.000 

0.1000 0.10 0.083 0.005 

0.1000 0.20 0.123 0.007 

0.1000 0.40 0.176 0.012 

0.1000 0.70 0.222 0.018 

0.1000 1.00 0.250 0.025 

1.006 1.012 1.026 0.975 0.956 0.922 

1.013 1.026 1.055 0.986 0.975 0.959 

1.026 1.051 1.106 0.995 0.992 0.987 

1.040 1.076 1.152 0.999 0.999 0.998 

1.048 1.090 1.175 1.000 1.000 1.000 

0.291 0.025 1.067 1.125 1.239 0.974 0.965 0.960 

0,341 0.029 1.092 1.168 1.314 0.986 0.981 0.979 

0.407 0.033 1.128 1.229 1.415 0.995 0.994 0.994 

0.465 0.042 1.160 1.281 1.492 0.999 0.999 0.999 

0.500 0.050 1.178 1.308 1.524 1.000 1.000 1.000 

0.2000 0.10 0.083 0.010 

0.2000 0.20 0.123 0.014 

0.2000 0.40 0.176 0.023 

0.2000 0.70 0,222 0.037 

0.2000 1.00 0.250 0.050 

1.005 1.010 1.022 0.975 0.956 0.922 

1.012 1.022 1.045 0.986 0.975 0.958 

1.023 1.043 1.085 0.995 0.992 0.987 

1.033 1.061 1.114 0-999 0.999 0.998 

1.038 1.068 1.123 1.000 1.000 1.000 

0.291 0 .050 1.054 1.098 1.175 0 .973 0 .962 0 .955 

0.341 0 .056 1.075 1.133 1.232 0.985 0 .980 0 .976 

0.407 0.067 1.104 1.180 1.304 0 .995 0 .994 0 .993 

0 .465 0 .083 1.128 1.215 1.348 0.999 0 .999 0 .999 

0 .500 0 .100 1.139 1.228 1.357 1.000 1.000 1.000 

0.3000 0.10 0.083 0.015 

0.3000 0.20 0,123 0.022 

0.3000 0.40 0.176 0.035 

0.3000 0.70 0.222 0.055 

0.3000 1.00 0.250 0.075 

1.005 1.009 1.019 0.975 0.956 0.922 

1.010 1.019 1.039 0.986 0.975 0.952 

1.109 1.035 1.069 0.995 0.992 0.987 

1.026 1.047 1.085 0.999 0.999 0.998 

1.028 1.050 1.085 1.000 1.000 1.000 

0.291 0.075 1.043 1.075 1.129 0.972 0.960 0.950 

0.341 0.083 1.060 1.103 1.172 0.984 0.978 0.974 

0.407 0.100 1.084 1.140 1.224 0.995 0.993 0.992 

0.465 0.125 1.101 1.163 1.240 0.999 0.999 0.999 

0.500 0.150 1.105 1.166 1.246 1.000 1.000 1.000 

0,4000 0.10 0.083 0.020 

0.4000 0.20 0.123 0.029 

0.4000 0.40 0.176 0.047 

0.4000 0.70 0.222 0.073 

0.4000 1.00 0.250 0.I00 

1.004 1.008 1.015 0.975 0.956 0.923 

1.009 1.016 1.032 0.986 0.975 0.958 

1.016 1.029 1.054 0.995 0.992 0.987 

1.021 1.036 I.O63 0.999 0.999 0.998 

1.021 1.035 ].058 1.000 1.000 1.000 

0.291 0.100 1.033 1.057 1.092 0.970 0.958 0.947 

0.341 0.111 1.049 1.079 1.126 0.983 0.977 0.971 

0.407 0.133 1.066 1.107 1.164 0.994 0.992 0.991 

0.465 0.157 1.077 1.121 1.177 0.999 0.999 0.999 

0.500 0.200 1.077 1.118 1.167 1.000 1.000 1.000 

exception. If we consider values of a z between 0.6 to 0.9 
there is little or no effect of dominance. 

It can be verified that for the same experimental 
parameters the results of Table 1 for autotetraploids are 
similar to those derived from diploids (Gallais 1990). 
With realistic contributions of dominance, it is not ex- 
pected that the presence of dominance will affect selection 
based on the diploid formulae. To verify such a predic- 
tion, it is possible to predict the genetic advance ignoring 
the dominance and to compare predicted genetic advance 
to the true one. In this case, the coefficients fll and/~2 in 
expression (15) are wrong. Ignoring dominance is equiva- 
lent to assuming no epistasis in diploids: 

coy (PO)T = 2 COV (HS)T ; cov (HUN)T = 1/2 cov (HS)T ; 

and 

cov (UN)T = c o v  (HS)T. 

As the general expressions of fil and fi2 are (Gallais 
1990): 

cov (PO)T A 
fil - a ~  B A =  [1 + ( n -  1) r]/n, 

(20) 
coy (PO)T 1 --A 

r2 = 0.2T 1 -- B B = [1 + (n-- 1) t]/n, 

the coefficients that will be estimated for half-sib families 
a r e  

2 cov (HS)T A o 
fl' with A o = [1 + ( n - l )  ro]/n 

a2  B (213 

2 coy (HS)T 1 -Ao 1/2 coy (HS)T 
fi2 -- a 2  1- -B and r o -  2 cov (HS)T I/4. 

The values of t do not change. With FS families it is 
only necessary to change the value of r o. 
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The formulation of the problem is exactly as for 
diploids and the established results can be extrapolated. 
If A G ;  is the genetic advance using combined selection by 
ignoring dominance and AG a the genetic advance when 
dominance is taken into account, the ratio AG'o/AG d will 
be equal to the correlation coefficient between the pre- 
dicted value of offspring when the presence of dominance 
is ignored and the predicted value when the presence of 
dominance is considered. Numerical  application shows 
that the correlation coefficient is not greatly affected by 
the amount  of dominance within a large range of varia- 
tion. This is as expected from the consideration of the low 
coefficient of the components  due to dominance in the 
expressions of covariances between relatives. Further- 
more, with the analogy between epistasis in diploids and 
dominance in autotetraploids, it can be extrapolated that 
the genetic advance due to additive variance when dom- 
inance is ignored, is in fact the genetic advance due to 
additive advance; that is, the genetic advance after relax- 
ation of the selection. 

Conclusion 

At the populat ion level the development of the concept of 
test value and the definition of genetic effects for this value 
lead to simple and classical mating designs for the detec- 
tion of dominance, and eventually of additive x additive 
epistasis, at the populat ion level, by the use of second- 
degree statistics. With progenies in a family structure, it 
will be possible to estimate two variance components  
(additive variance and dominance variance), and with a 
two-way mating design it will be possible to explore the 
epistasis components.  Such designs avoid, at least partial- 
ly, the difficulties in estimating simultaneously more than 
two variance components  with classical designs (see Chi 
et al. 1969; Gallais 1976, 1977). The simplification is due 
to the absence of tri- and tetragenic interactions for the 
values in test. 

Considering the application to recurrent selection, the 
same results as for diploids remain because the effects of 
dominance can be generally neglected for the prediction 
of genetic advance. As for diploids, the combined selec- 
tion appears efficient relative to individual progeny selec- 
tion if the kinship between members  of the family is suf- 
ficiently strong. There is nothing to gain with combined 
selection using half-sib families, but full-sib families can 
increase significantly the efficiency of combined selection 
if heritability is relatively low (at the level of the individ- 
ual). However, when the experimental structure needed 
to test progenies with realistic ranges of heritabilities is 
taken into consideration, as well as the number  of proge- 
nies per family, the gain in efficiency will be only between 
10% and 30%. 

The development of intercrossing by pair-crossing 
will be very efficient for combined selection. Scheme 3 of 

recurrent selection, with pair-crossing at the same time 
as crossing with the tester with one off-season generation, 
will be favoured. Without combined selection, the superi- 
ority of scheme 3 is expected to be 41%. In diploids 
another breeding scheme was very competitive with 
scheme 3: it includes testcross progenies of S 1 plants with 
3 - 5  progenies per S1 and the intercrossing of S 2 families 
of the best S I plants. With an annual plant and two 
off-season generations (one for crossing with the tester 
and the other for intercrossing) the gain in comparison 
with method 1 with intercrossing in off-season is greater 
than 40% and can reach 100% by the use of combined 
selection for low to moderate  heritabilities. However, for 
autopolyploids it is not possible to use such a scheme 
because the intercrossing of the Sj plants does not com- 
pletely remove the inbreeding, or it will be necessary to 
use one more generation of intercrossing. The greater 
length of the cycle will decrease the advantage of this 
method. However, in both situations, (i.e., with the inter- 
crossing of the $1 plants with one or two generations of 
intercrossing), it would be interesting to consider the ge- 
netic advance per unit of time: it could be greater than 
with the test of S o plants. Unfortunately, inbreeding gen- 
erates new parameters (the components  of covariance 
between inbred relatives), which are difficult to estimate 
(Gallais 1976). Then a priori predictions are difficult. 
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